

Pergamon Tetrahedron Letters 42 (2001) 5749–5752

TETRAHEDRON LETTERS

A convenient approach towards 2-analogs of zoapatanol from D-glucose

Huib Ovaa, Gijs A. van der Marel and Jacques H. van Boom*

Leiden Institute of Chemistry, *Gorlaeus Laboratories*, *Leiden University*, *PO Box* 9502, 2300 *RA Leiden*, *The Netherlands* Received 30 March 2001; revised 3 April 2001; accepted 31 May 2001

Abstract—The protected 3-*C*-methyl- α -D-allofuranose derivative 6, readily accessible from D-glucose, could be transformed into a diene scaffold which underwent ring-closing metathesis (RCM) to give the functionalized oxepines **10a**,**b**. Further elaboration of **10a**,**b** provided the 2-zoapatanol analogs **3**–**5**. © 2001 Elsevier Science Ltd. All rights reserved.

Nearly two decades ago, Levine et al.¹ reported the isolation and structure elucidation of zoapatoanol (**1**) and montanol (**2**), which represent two of the four structurally related oxepane diterpenoids isolated from the leaves of the Mexican zoapatle plant *Montanoa tomentosa*. 'Tea' prepared from extracts of the leaves has been used as a contraceptive in local folk medicine. Additional studies² support the belief that further metabolites might contribute to the antifertility activity. The intriguing biological activity and the unusual oxepane3 structural motif of these diterpenoids resulted in a number of total syntheses,⁴ only one of which culminated in the synthesis of $(+)$ - $(2'S,3'R)$ -zoapatanol (**1**).5 A successful synthesis of **1** requires, apart from the construction of the nonenyl side-chain, a stereocontrolled preparation of the oxepane core and introduction of the exocyclic *E*-double bond. Retrosynthetic analysis revealed that the construction of the correct stereochemistry of the oxepane motif could in principle be achieved by performing a ring-closing metathesis on a sugar-diene⁶ scaffold derived from known7 3-*O*-allyl-1,2;5,6-di-*O*-*iso*propylidene-3-*C*-methyl- α -D-allofuranose (6).

Scheme 1. (a) K₂OsO₄·H₂O, NMO, acetone/water (3/1), 96%; (b) NaIO₄, CH₂Cl₂/H₂O; (c) H₂C=CHMgBr, THF, −78 to −30°C, 84% (two steps); (d) BnBr, NaH, DMF; (e) 70% HOAc (aq.), rt, 84% (two steps); (f) Ph₃P (1.3 equiv.), I₂ (1.3 equiv.), imidazole (5 equiv.), toluene, 80° C, 85% ; (g) Zn (5 equiv.), EtOH, reflux, 100% ; (h) catalyst **A** (1 mol%) CH₂Cl₂, rt, 10a, 47%; catalyst **B** (1 mol%), CH₂Cl₂, reflux, 10a,b, 95%.

Keywords: ring-closing metathesis; oxepanes.

^{*} Corresponding author. Tel.: +0031 71 5274274; fax: +0031 71 5274307; e-mail: j.boom@chem.leidenuniv.nl

⁰⁰⁴⁰⁻⁴⁰³⁹/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: $$0040-4039(01)00932-7$

Here we report that **6**, readily accessible from D-glucose, can be transformed into the protected 2-zoapatanol analogs **3**–**5**.

The preparation of target compounds **3**–**5** commences (Scheme 1) with the elaboration of **6** to the substituted oxepine derivatives **10a**,**b** by the following high yielding three-step process. Thus, dihydroxylation of **6** and cleavage of the diol was followed by addition of vinylmagnesium bromide to the intermediate aldehyde to give **7**⁸ as a mixture of epimers in an overall yield of 80%. Benzylation of **7** and regioselective deacetonation afforded **8a**. Treatment of diol **8a** with a small excess of triphenylphosphine and iodine in the presence of imidazole gave iodohydrin 8b, Boord⁹ elimination of which afforded the diolefinic derivative **9** as a diastereoisomeric mixture in a yield of 71% based on **7**. Ring-closing metathesis10 (RCM) of epimeric **9** with Grubbs catalyst $A¹¹$ led to an effective resolution¹² providing 10a, as evidenced by NOESY¹H NMR spectroscopy. RCM of **9** utilizing the more active Ru-based complex **B**¹³ gave **10a**,**b** in a near quantitative yield.

effected by selective crystallization of crude **12***E*,*Z* from the solvent mixture *n*-hexane–cyclohexane (1:1). Moreover, recycling of the mother liquid by ozonolysis and subsequent HWE elongation gave homogeneous **12***E* in an average yield of 65%. The *E*-geometry of the exocyclic olefinic bond in **12** was supported by ¹ H NMR spectroscopy, and determined unambiguously by X-ray crystallographic analysis¹⁵ (Fig. 1) of the allylic alcohol **13** resulting from DIBAL-H reduction of **12***E*. Deblocking of the isopropylidene group in **13** under the influence of Amberlite IRA 120 (H⁺) resin gave, after regioselective silylation, the advanced intermediate **14**, as a mixture of anomers in a yield of 73%. Subsequent manipulation of **14** leading to the silyl-protected target compounds **3**–**5** is outlined in Scheme 3. Cleavage of the diol function in **14** was followed by deformylation and Wittig olefination with ethyl triphenylphosphoranylidene acetate to give the expected α , β -unsaturated ester **16** and a minor amount (6%) of the lactone **15**, resulting from in situ cyclization of the Wittig *Z*olefinic byproduct. Treatment of 16 ($R = H$) with excess $LiAlH₄$ at low temperature led to the isolation of 3 and

In the next stage, construction of **14** containing the required exocyclic *E*-double bond was undertaken (Scheme 2). Reduction of the olefinic function in **10a**,**b** and concomitant debenzylation with hydrogen and catalytic palladium on carbon, followed by Dess–Martin periodinane oxidation led to ketone **11** in 91% overall yield. A two-carbon Horner–Wadsworth–Emmons (HWE) homologation of **11** in benzene with triethyl phosphonoacetate and sodium hydride afforded the α , β -unsaturated ester 12, as a 1:1 mixture of (E/Z) -isomers.14 Isolation of homogeneous **12***E* could be readily

Figure 1. ORTEP presentation of **13** (hydrogen atoms are omitted for clarity and oxygen atoms are marked with an asterisk).

Scheme 2. (a) H_2 , 10% Pd/C (cat.), EtOH, HOAc, 96%; (b) Dess–Martin reagent, CH₂Cl₂, 95%; (c) triethyl phosphonoacetate, NaH, benzene, 0°C to rt, 99%; (d) O₃, CH₂Cl₂/MeOH, −78°C then DMS, 81%; (e) DIBAL-H, CH₂Cl₂/*n*-hexane −78 to −30°C, 96%; (f) Amberlite IRA 120 (H⁺), THF/H₂O reflux; (g) TBSCl (1.2 equiv.) pyridine, 0°C, 73% (two steps).

Scheme 3. (a) NaIO_4 , $\text{MeOH}/\text{H}_2\text{O}$; (b) Et₃N, MeOH , H_2O ; (c) Ph_3P =CHCOOEt, CH₃CN, 72% (three steps); (d) LiAlH₄, THF, −78 to 0°C, 77%; (e) TBSOTf, lutidine, CH2Cl2, −30°C, 98%; (f) DIBAL-H, CH2Cl2/*n*-hexane −78 to −30°C, 90%; (g) $Ac_2O/pyridine$, 96%; (h) NaCH(COOEt)₂, 10 mol% $[(dba)_3Pd_2]$ ·CHCl₃, 20 mol% dppb, THF, 66%.

a small amount (5%) of the diolefinic derivative **17**. The formation of **3** may be ascribed to an intramolecular 3'-hydroxyl-assisted hydride delivery.¹⁶ On the other hand, reduction of disilylated derivative **18**, obtained by silylation of **16** using TBSOTf, with DIBAL-H afforded **4** in a yield of 90%. The potential usefulness of **4** was illustrated in performing an intermolecular reaction with a carbon nucleophile and palladium catalysis.¹⁷ For example, reaction of the acetate **19**, with the sodium salt of diethyl malonate in the presence of the complex $[(dba)$ ² $Pd_2]$ ² $CHCl_3$ and the ligand dppb gave, after purification, homogeneous **5** in a yield of 66%.

In conclusion, the simple and straightforward chiron approach presented here gives access to interesting analogs of zoapatanol. A full report on the scope of this approach as well as the potential antifertility activity of this type of analogs will be reported in due course.

Acknowledgements

The authors would like to thank Jasper Plaisier for performing X-ray crystallographic measurements. This work was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Scientific Research (NWO).

References

1. (a) Levine, S. D.; Adams, R. E.; Chen, R.; Cotter, M. L.; Hirsch, A. F.; Kane, V. V.; Kanojia, R. M.; Shaw, C.; Wachter, M. P.; Chin, E.; Huettemann, R.; Ostrowski, P.; Mateos, J. L.; Noriega, L.; Guzmán, A.; Mijarez, A.; Tovar, L. *J*. *Am*. *Chem*. *Soc*. **1979**, 101, 3404; (b) Kanojia, R. M.; Wachter, M. P.; Levine, S. D.; Adams, R. E.; Chen, R.; Chin, E.; Cotter, M. L.; Hirsch, A. F.; Huettemann, R.; Kane, V. V.; Ostrowski, P.; Shaw, C. J.; Mateos, J. L.; Noriega, L.; Guzman, A.; Mijarez, A.; Tovar, L.; Shefter, E. *J*. *Org*. *Chem*. **1982**, 47, 1310.

- 2. (a) Kanojia, R. M.; Chin, E.; Smith, C.; Chen, R.; Rowand, D.; Levine, S. D.; Wachter, M. P.; Adams, R. E.; Hahn, D. W. *J*. *Med*. *Chem*. **1985**, 28, 769; (b) Hahn, D. W.; Ericson, E. W.; Lai, M. T.; Probst, A. *Contraception* **1981**, 23, 133.
- 3. For a review on seven-membered oxacycles, see: Hoberg, J. O. *Tetrahedron* **1998**, 54, 12631.
- 4. (a) Cookson, R. C.; Liverton, N. J. *J*. *Chem*. *Soc*., *Perkin*. *Trans*. 1 **1985**, 1589; (b) Chen, R.; Rowand, D. A. *J*. *Am*. *Chem*. *Soc*. **1980**, 102, 6609; (c) Nicolaou, K. C.; Claremon, D. A.; Barnette, W. E. *J*. *Am*. *Chem*. *Soc*. **1980**, 102, 6611; (d) Kocienski, P.; Love, C.; Whitby, R.; Roberts, D. A. *Tetrahedron Lett*. **1988**, 29, 2867; (e) Kocienski, P. J.; Love, C. J.; Whitby, R. J.; Costello, G.; Roberts, D. A. *Tetrahedron* **1989**, 45, 3839; (f) Kane, V. V.; Doyle, D. L. *Tetrahedron Lett*. **1981**, ²², 3027; (g) Kane, V. V.; Doyle, D. L. *Tetrahedron Lett*. **1981**, ²², 3031.
- 5. Trost, B. M.; Greenspan, P. D.; Geissler, H.; Kim, J. H.; Greeves, N. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **1994**, 33, 2182.
- 6. Ovaa, H.; Leeuwenburgh, M. A.; Overkleeft, H. S.; Van der Marel, G. A.; Van Boom, J. H. *Tetrahedron Lett*. **1998**, 39, 3025.
- 7. Shing, T. K. M. et al. (see: *Tetrahedron*: *Asymmetry* **1996**, ⁷, 1323) used **6** in a study towards oxepanes via a cycloaddition approach.
- 8. All new compounds were obtained in an analytically pure form and fully characterized by spectroscopic techniques $(^{1}H$ and ^{13}C NMR) and (high-resolution) analysis of their molecular ion masses.
- 9. Dykstra, H. B.; Lewis, F. J.; Boord, C. E. *J*. *Am*. *Chem*. *Soc*. **1930**, 52, 3396.
- 10. For a recent review on RCM, see: Furstner, A. *Angew*. *Chem*., *Int*. *Ed*. **2000**, 39, 3013.
- 11. Schwab, P.; Grubbs, R. H.; Ziller, J. W. *J*. *Am*. *Chem*. *Soc*. **1996**, 118, 100.
- 12. Huwe, M.; Velder, J.; Blechert, S. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **1996**, 35, 2376.
- 13. Scholl, M.; Ding, S. D.; Lee, C. W.; Grubbs, R. H. *Org*. *Lett*. **1999**, 1, 953.

14. Interestingly, execution of the HWE homologation in toluene exclusively led to the vinylether derivative **20** in 78% yield.

15. Monoclinic, spacegroup *P*21, *a*=7.6830 (3), *b*=6.3980 (3) , $c = 15.6680$ (8) \AA , $\beta = 103.8030$ (17) °, $V = 743.55$ (6) Å³, *Z*=2, *D*_{calcd}=1.274 g cm^{−3}, λ (Mo Kα)=0.71073 Å, μ =0.10 mm⁻¹, θ =1.00–27.48°, −9≤h≤9, −7≤k≤8, −20*l*20. Data were collected at room temperature on a Nonius Kappa CCD area detector mounted on a sealed-

tube X-ray generator with graphite monochromator using the Φ scan mode. Reflections collected = 5922, 1855 reflections were classified as independent. Refinement on F_0 by full-matrix least-squares on F^2 . Reflections = 2213 with $I > 3\sigma(I)$, restraints = 0, parameters = 180. Goodnessof-fit on $F^2 = 0.989$, final $R = 0.048$, $wR = 0.068$, $w = 1/$ $(\sigma^2 (F_o^2) + 0.03000 \times F_o^2)$, $\Delta \rho_{\text{max}} = 0.281$ e Å³, $\Delta \rho_{\text{min}} =$ -0.255 eÅ³.

- 16. For a review on substrate-directable chemical reactions, see: Hoveyda, A. H.; Evans, D. A.; Fu, G. C. *Chem*. *Rev*. **1993**, 93, 1307.
- 17. (a) Trost, B. M.; Li, Y. *J*. *Am*. *Chem*. *Soc*. **1996**, 118, 6625; (b) Trost, B. M.; van Vranken, D. L. *Chem*. *Rev*. **1996**, 96, 395.